Case Study

Chikako Shimizu, MD Breast and Medical Oncology Division National Cancer Center Hospital Triplenegative paradox

Cortazar P et al. Lancet 2014

Case 1 34 yo T1cN3bMo, Stage IIIc

- Chief Complaints
 - A lump in the right breast
 - Fertility preservation
- Past History
 - Bipolar disorder
 - oGoP
- Family History
 - Mother: breast cancer (43yr)
 - Mother's sister: cancer
 - Mother's grandfather: cancer
 - Father: pancreatic cancer, renal cancer, gastric cancer

Case 1 34 yo T1cN3bMo, Stage IIIc

- Present History
 - Jul 2008 Consultation to NCCH
 - Clinical diagnosis: right breast cancer, T1cN3b(parasternal LN swelling) Mo, Stage III B
 - CNB: Invasive carcinoma, Grade 3, ER<1%, PgRo, HER2 o.
 - Sep 2008 Mar 2009
 - $FE_{100}C \times 4 \text{ f/b}$ weekly paclitaxel $\times 12 \Rightarrow$ clinical CR
 - Apr 2009 rt. Bp+Ax
 - Residual intraductal carcinoma component of invasive ductal carcinoma (0.07x0.05 cm) with clear margin, n=0/5
 - Jun –Jul 2009 adjuvant radiotherapy
 - 66Gy, chest wall

Pre NAC

Case 1 Clinical Images

Post NAC

Pre NAC

Post NAC

Case 1 34 yo T1cN3bMo, Stage IIIc

- Present History
 - Jul 2008 First visit to NCCH
 - Aug 2008 Consultation to a reproductive specialist
 - Sep 2009 Egg collection, embryo Cryopreservation (1 embryo)
 - Sep 2008 Mar 2009
 - $FE_{100}C \times 4 f/b$ weekly paclitaxel $\times 12 \Rightarrow$ clinical CR
 - Oct 2008 Egg collection, embryo cryoprervation (3 embryos)
 - Apr 2009 rt. Bp+Ax
 - Oct 2009 Restoration of menstrual cycle
 - Jun –Jul 2009 adjuvant radiotherapy
 - 66Gy, chest wall
 - Oct 2010 Embryo transfer (successful pregnancy in the 3rd attempt)
 - Aug 2011 Delivery
 - No evidence of recurrence as of Apr 2014

Case 2 37 yo T2N1Mo, Stage IIB

- Chief Complaints
 - A lump in the left breast
- Past History
 - oGoP
- Family History
 - No family history of cancer

Case 2 37 yo T2N1Mo, Stage IIB

- Present History
 - Jun 2011 Consultation to NCCH
 - Clinical diagnosis: left breast cancer, T2N1Mo, Stage II B
 - CNB: Invasive ductal carcinoma, Grade 3, ER o, PgR<1%, HER2 o.
 - Did not give consent to participate in a randomized neoadjuvant study of carboplatin
 - Jul 2011 Jan 2012
 - $FE_{100}C \times 4 \text{ f/b}$ weekly paclitaxel $\times 12 \Rightarrow$ clinical PR
 - Feb 2012 It. Bp+Ax
 - Residual invasive ductal carcinoma (2.3x1.4cm) with positive margin, n=3/13
 - Mar 2012 additional resection with clear margin May –Jun 2012 adjuvant radiotherapy
 - 50Gy+10Gy boost, left breast
 - Jun 2013 recurrence to ipsilateral breast and supraclavicular LNs

Case 2 Clinical images

Post NAC

Residual tumor

Granulation tissue

recurrence to ipsilateral breast and supraclavicular LNs (a year after adjuvant radiotherapy)

What kind of treatment would you offer to her?

- 1. Eriburin
- 2. Oral FU
- 3. Platinum agents
- 4. Taxane-rechallenge + bevacizumab
- 5. Others
- 6. Clinical trials

Case 2 37 yo T2N1Mo, Stage IIB

- Jun Aug2013 Phase I/II study of eriburin/oraparib for patients with TNBC pretreated with an anthracycline and a taxane
- Aug 2013 PD
- Consent to TOPICS/TOP-GEAR
- Sep 2013-Mar 2014 Phase II study of carboplatin/S1 for metastatic TNBC (best response: SD)
- Mar 2013 PD (local progression and solitary liver metastasis)
- Apr 2014- gemcitabine

What makes this difference?

Case 2

ER

PgR

HER₂

- Treatment
- Biology

carboplatin

Randomized phase II study of weekly paclitaxel with or without carboplatin followed by FEC as neoadjuvant chemotherapy for stage II/IIIA breast cancer without HER2 overexpression

Ando et al. Breast Cancer Res Treat 2014

GeparSixto

carboplatin: AUC 1.5-2.0 q1wks

Subgroup	Number of patie	nts	Odds ratio (95% CI)	Test for interaction
Overall	588		1·33 (0·956–1·85)	
Subtype				<u>,</u>
TNBC	315	∎	1.94 (1.24-3.04)	0.015
HER2 postive	273		0.841 (0.511–1.39)	<u>}</u>
Carboplatin dose		1		<u>,</u>
Carboplatin AUC 2.0	329		1.01 (0.652–1.57)	0.059
Carboplatin AUC 1-5	259	_	1.93 (1.16–3.21)	<u>}</u>
Age				_
<40 years	129		1·31 (0·649–2·65)	0.060
40 years or older	459	+	1.33 (0.917–1.94)	50.909
сT				-
cT1-3	552	⊢ ∎−	1.34 (0.954–1.89)	0.366
cT4	34 ———		0.636 (0.129-3.14)	ſ
cN				
cN0	291		1.60 (1.00-2.54)	
cN+	285		1.08 (0.663-1.75)	0.254
Oestrogen/progesterone				2
Negative	424		1.52 (1.04–2.23)	0.207
Positive	164	_	0.907 (0.447–1.84)	<u>ر د د د ر</u>
Ki67				
≤20%	126		1.09 (0.490–2.40)	0.560
>20%	462	⊢∎	1.40 (0.968–2.02)	5 0.303
Grading				-
1–2	207		0.776 (0.432-1.40)	1 0.027
3	381	₩	1.73 (1.15-2.60)	5 0.027
	0.12 0.2	0.4 0.6 0.8 1 1.5 2 3.2	22	
More pCR	(vpTO vNO) without	arboplatin More pCR(v	TO vNO) with carbopla	tin

von Minckwitz, Lancet Oncol 2014

Platinum-vs not-platinum based NAC

pCR in TNBC with platinum vs not-platinum-based NAC

Petrelli, Breast Cancer Res Treat 2014

Favour not-platinum Favour platinum

Platinum agents in TNBC: metaanalysis of published data

Cortazar P et al. Lancet 2014

VOTING 1

Do you think that pCR an appropriate endpoint for new drug approval for TNBC ?

1. Yes

2. No

Polymerase 1 (PARP1).

Phase IA Phase IB Tumor Type-no. (%) Tumor Type-no. (%) N=60 N=50 21 (35) 47 (94) Ovarian **Ovarian** 2(4) Breast 9 (15) Primary peritoneal Colorectal 8 (13) Fallopian tube 1(2) 4(7) Histology Melanoma 4(7) 34 (68) Sarcoma Serous papillary 2(4) Prostate 3 (5) Endometrioid 14 (2) Other 11(18) Others BRCA mutation status all patients **BRCA mutation status all patients** BRCA1 Mutation 17(28) BRCA1 Mutation 41(82) **BRCA2 Mutation** BRCA2 Mutation 9(18) 5(8) Fong PC et al. Fong PC et al. N Engl J Med 361:123-134, 2009 J Clin Oncol 28:2512-2519 2010

Phase II Trial of Olaparib in BRCA Mu Breast Ca

PARP inhibitor

BRCA1 methylation in breast cancer

Phase I/II trial of Eribulin plus Olaparib in Pts with Advanced Triple Negative BC

- Primary Endpoint: MTD, DLT, RD (Phase I); Response rate (Phase II)
- Secondary Endpoint: PK/PD, POC, PGx (Phase I); Biomarker (Phase II)

Assessment of IND using neoadjuvant platform with novel trial design (I-SPY2)

Veraparib (ABT888): a PARPi

Signature	Signature Estimated pCR Rate (%)		Probability	Predictive	
	Veriparib/ CBDCA (n=72)	Concurrent control (n=44)	Veriparib/ CBDCA is superior to control (%)	probability of success in Phase 3 (%)	
All HER2-	33 (23-43)	22 (10-35)	92	55	
HR+/HER2-	14 (4-27)	19 (6-35)	28	9	
HR-/HER2-	52 (35-69)	26 (11-40)	99	90	

Rugo et al. SABCS 2013

Should germline BRCA status be factored into systemic therapy decisions?

1. Yes

VOTING 2

Variable	OR	95% CI	Р	
Age (n = 304)	1.01	0.98 to 1.05	.47	<u>∑</u>
Clinical tumor stage				ee
T2 (n = 166) v T1 (n = 38)	0.63	0.27 to 1.47	.28	ab F
T3 (n = 56) v T1 (n = 38)	0.88	0.32 to 2.38	.80	- a
T4 (n = 29) v T1 (n = 38)	0.42	0.12 to 1.49	.18	2 2
T4d (n = 15) v T1(n = 38)	1.87	0.49 to 7.15	.36	er (b
ER status, negative (n = 112) v positive (n = 192)	1.98	1.06 to 3.69	.03	curr ival
Nuclear grade, 3 (n = 180) v 1/2 (n = 124)	1.56	0.82 to 2.99	.18	Rec
Trastuzumab use, yes (n = 45) v no (n = 259)	4.16	2.03 to 8.52	< .001	S
BRCA mutation, BRCA1 (n = 54) v noncarriers (n = 227)	3.10	1.52 to 6.32	.002	
BRCA2 (n = 23) v noncarriers (n = 227)	0.91	0.24 to 3.47	.89	

Biology: TNBC subtypes

Canonical Pathways

G, Pathway RNA Polymerase ATR/ BRCA Pathway WNT p-catenin Pathway Immunomodulatory Antigen Processing/ Presentation NFKB Pathway TNF Pathway T Cell Signal Transduction DC Pathway BCR Signaling Pathway NK Cell Mediated Cytotoxicity JAK/STAT Signaling Pathway ATR/BRCA Pathway

IGF/mTOR Pathway ECM Pathway Regulation of Actin by RHO WNT Pathway

Mesenchymal Stem-like ECM Receptor Interaction Inositol Phophate Metabolism GH Pathway NK Cell Mediated Toxicity RACI Pathway GPCR Pathway ERK1/2 Pathway Integrin Mediated Adhesion ABC Transporters General RHO Pathway Smooth Nuscle Contraction Catcium Signaling Pathway PDGP Pathway PDGP Pathway

Pentose/Glucuronate Interconversion Glutathione Metabolism Tyrosine Metabolism Tyroans wetabolism Steroid Biosynthesis Porphyrin Metabolism Androgen and Estrogen Metabolism Flagellar Assembly Citrate Cycle TCA Phanularians Matabolism Phenylalanine Metabolisn ATP Synthesis Starch and Surcrose Metabolism Arginine and Proline Metabolism Metabolism by Cytochrome P450 Fructose and Mannose Metabolism Fatty Acid Metabolism Alanine and Aspartate Meta Eicosanoid Synthesia CHREB Pathway **Tryptophan Metabolism**

Lehmann et al. JCI 2011

TNBC subtype and response to NAC

Masuda H et al. Clin Cancer Res 2013

Multiplex gene test <u>NCC Oncopanel (Original)</u>

90 mutation/amplicication genes (whole exon)						10 fusion genes
ABL1	BRCA2	EZH2	JAK3	NOTCH1	RAC2	ALK
AKT1	CCND1	FBXW7	KEAP1	NOTCH2	RAD51C	RET
АКТ2	CDK4	FGFR1	КІТ	NOTCH3	RAF1	ROS1
АКТЗ	CDKN2A	FGFR2	KRAS	NRAS	RB1	FGFR2
ALK	CHEK2	FGFR3	MAP2K1	NRG1	RET	FGFR3
APC	CREBBP	FGFR4	MAP2K4	NT5C2	ROS1	АКТЗ
ARID1A	CTNNB1	FLT3	MAP3K1	PALB2	SETD2	BRAF
ARID2	CUL3	HRAS	MAP3K4	PBRM1	SMAD4	RAF1
ATM	DDR2	IDH1	MDM2	PDGFRA	SMARCA4	NOTCH1
AXIN1	EGFR	IDH2	MET	PDGFRB	SMO	NRG1
BAP1	ENO1	IGF1R	MTOR	ΡΙΚ3ϹΑ	STAT3	•
BARD1	EP300	IGF2	MYC	PIK3R1	STK11	•
BIM	ERBB2	IL7R	MYCN	PTCH1	TP53	•
BRAF	ERBB3	JAK1	NF1	PTEN	TSC1	•
BRCA1	ERBB4	JAK2	NFE2L2	RAC1	VHL	•

- Formalin-fixed paraffin embedded tissue
- Customization of gene selection according to scientific and/or clinical interest
- Removal of Japanese polymorphism
- Accumulation of precise genomic datan

<u>Trial of Onco-Panel for Introduction into Clinical Study - Phase 1</u> (TOPICS-1)

Detected mutation and amplification (n=60)

Patients with more than one actionable mutations: 28 of 60 patients (46%)

Enrollment in phase I trial (breast cancer: n=3)

	Genomic target	Matched drug	Anti-tumor activity
Breast ca.	AKT1	AKT1 inhibitor	PR
Breast ca.	PIK3CA	PI3K inhibitor	PD
Breast ca.	-	Eribulin/Oraparib	PD

55 (13% of the biopsied patients, 28% of those with targetable alterations) received targeted treatment based on a genomic alteration

Andre F. Lancet Oncology 2014

VOTING 3

Do you think that "oncopanel(s)" would be useful tools in drug development for TNBC?

- 1. Yes, it will become a necessary tool.
- 2. No, there's a room for innovation.

Summary

Points to consider in developing treatment strategies for TNBC

- 1. Actionable biomarker / Drug development
- 2. Clinical trials using neoadjuvant platform / validation of surrogate endpoint
- 3. Patient enrichment by host genotyping/TNBC subtyping
- 4. Innovative trial design
- 5. Integrative translational research